map2loop.m2l_export
- map2loop.m2l_export.ElementToPandas(loopFilename, element, loopCompoundType)
ElementToPandas - Exports one element of the loop project file to a pandas dataframe
Parameters
- loopFilename: string
The filename of the loop project file
- element: string
The name of the element to extract
- loopCompoundType: numpy.compoundType
The numpy data structure that the element is stored in
- Returns
pandas dataframe
- map2loop.m2l_export.loop2LoopStructural(m2l_directory)
create a model from a map2loop directory
[extended_summary]
Parameters
- m2l_directorystring
path to the map2loop directory
- map2loop.m2l_export.loop2gempy(*args, **kwargs)
Calculate the model using gempy as backend. At the moment there is not support for finite faults since gempy does not
accept passing the ellipsoid parameters directly.
- Parameters
(str) (vtk_path) – path of contacts file
orientations_file – path of orientations file
bbox – model bounding box
groups_file – path of groups file
model_base – z value ofbase of model
model_top – z value of top of model
dtm_reproj_file – path of dtm file
faults_contact – path of contacts file with fault data
faults_orientations – path of orientations file with fault data
faults_rel_matrix – bool matrix describing the interaction between groups. Rows offset columns
faults_groups_rel – bool matrix describing the interaction between faults and features
faults_faults_rel – bool matrix describing the interaction between faults and faults
model_name – name of the model
(bool) (vtk) – Default True. Whether or not compute the model
(bool) – Default False. Whether or not visualize the model
(str) – Default None. Path of vtk output directory
(dict) (plot_3d_kwargs) – kwargs for gempy.plot_3d
- Returns
gempy.Project
- map2loop.m2l_export.loop2gempy__(test_data_name: str, tmp_path: str, vtk_path: str, orientations_file: str, contacts_file: str, groups_file: str, bbox: tuple, model_base: float, model_top: float, vtk: bool, dtm_reproj_file: Optional[str] = None, va=None, verbose: bool = False, compute: bool = True)
- Parameters
test_data_name –
tmp_path –
vtk_path –
orientations_file –
contacts_file –
groups_file –
bbox –
model_base –
model_top –
vtk –
dtm_reproj_file –
va – vertical anisotropy. Factor by which all Z coordinates are multiplied by
verbose –
compute –
- Returns
- map2loop.m2l_export.rand_cmap(nlabels, type='bright', first_color_black=True, last_color_black=False, verbose=True)
Creates a random colormap to be used together with matplotlib. Useful for segmentation tasks :param nlabels: Number of labels (size of colormap) :param type: ‘bright’ for strong colors, ‘soft’ for pastel colors :param first_color_black: Option to use first color as black, True or False :param last_color_black: Option to use last color as black, True or False :param verbose: Prints the number of labels and shows the colormap. True or False :return: colormap for matplotlib